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Abstract

The GLP-1 receptor is a Class B heptahelical G-protein-coupled
receptor that stimulates cAMP production in pancreatic B-cells.
GLP-1 utilizes this receptor to activate two distinct classes of
cAMP-binding proteins: protein kinase A (PKA) and the Epac
family of cAMP-regulated guanine nucleotide exchange factors
(cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include
the recruitment and priming of secretory granules, thereby in-
creasing the number of granules available for Ca?*-dependent
exocytosis. Simultaneously, GLP-1 promotes Ca2* influx and mo-
bilizes an intracellular source of Ca%*. GLP-1 sensitizes intracellu-
lar Ca2* release channels (ryanodine and IP; receptors) to stimu-
latory effects of Ca?*, thereby promoting Ca%*-induced Ca?* re-
lease (CICR). In the model presented here, CICR activates mito-
chondrial dehydrogenases, thereby upregulating glucose-depen-
dent production of ATP. The resultant increase in cytosolic [ATP]/

[ADP] concentration ratio leads to closure of ATP-sensitive K*
channels (K-ATP), membrane depolarization, and influx of CaZ*
through voltage-dependent Ca%* channels (VDCCs). Ca%* influx
stimulates exocytosis of secretory granules by promoting their
fusion with the plasma membrane. Under conditions where Ca?*
release channels are sensitized by GLP-1, Ca?* influx also stimul-
ates CICR, generating an additional round of ATP production and
K-ATP channel closure. In the absence of glucose, no “fuel” is
available to support ATP production, and GLP-1 fails to stimulate
insulin secretion. This new “feed-forward” hypothesis of B-cell
stimulus-secretion coupling may provide a mechanistic explana-
tion as to how GLP-1 exerts a beneficial blood glucose-lowering
effect in type 2 diabetic subjects.
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Introduction

Glucagon-like peptide-1-(7-36)-amide (GLP-1) is a blood glu-
cose-lowering hormone that activates a surprisingly diverse ar-
ray of signaling pathways in the pancreatic B-cell. Binding of
GLP-1 to its 62 kDa Class B heptahelical Gs-protein-coupled re-
ceptor activates adenylyl cyclase, stimulates cAMP production,
and potentiates glucose-dependent insulin secretion from the
pancreas [1,2]. First-phase and second-phase insulin secretion
are enhanced, and pulsatile insulin secretion in humans is aug-

mented [3,4]. These immediate effects of GLP-1 are complement-
ed by its delayed insulinotropic action in stimulating insulin
gene transcription and upregulating translational biosynthesis
of preproinsulin [5,6]. By serving as an intermediary linking
intestinal nutrient absorption to pancreatic insulin secretion,
GLP-1 fulfills its physiological role as an incretin hormone within
the enteroinsular axis [7,8].

Simultaneously, GLP-1 increases pancreatic insulin secretory ca-
pacity by stimulating the formation of new B-cells within the is-
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lets of Langerhans. Activation of GLP-1 receptors accelerates the
conversion of pancreatic ductal stem cells to new B-cells while
exerting a major proliferative effect in stimulating mitosis in ex-
isting B-cells [9,10]. These neogenic and proliferative actions of
GLP-1 are complemented by its ability to protect against 3-cell
death [11 -14]. It may be concluded that in addition to its insuli-
notropic properties, GLP-1 acts as a B-cell growth factor.

Growth factor-like actions of GLP-1 result from its ability to stim-
ulate mitogen-activated protein kinases (p38 MAPK, ERK1/2), src
kinase (pp60°), phosphatidylinositol 3-kinase (PI-3K), atypical
protein kinase C-{ (PKC-(), and protein kinase B (PKB, Akt)
[15,16]. GLP-1 also transactivates the epidermal growth factor
receptor (EGF-R) [16], upregulates the expression of insulin re-
ceptor substrate 2 (IRS-2) [17], and interacts with insulin or insu-
lin-like growth factor 1 (IGF-1) signaling pathways that control
B-cell function [18]. By influencing the function of key transcrip-
tion factors (CREB; PDX-1), GLP-1 stimulates coordinate gene ex-
pression, thereby maintaining B-cells in a fully differentiated
state [19-21].

This constellation of unique insulinotropic and growth factor-
like signaling properties has prompted interest in the use of
GLP-1 and its synthetic peptide analogs (Exenatide, NN2211,
CJC-1131) as novel blood glucose lowering agents for treatment
of type 2 diabetes mellitus [22]. When administered to type 2
diabetic subjects, GLP-1 lowers the concentration of fasting
blood glucose, restores the missing first phase component of glu-
cose-dependent insulin secretion, and delays the postprandial
hyperglycemic excursion. Since GLP-1 is rapidly degraded by di-
peptidyl peptidase IV (DPP-IV), the antidiabetogenic properties
of endogenously secreted GLP-1 are enhanced by DPP-IV inhibi-
tors (LAF237, MK-0431, NN7201) [23].

Summarized here are new findings that shed light on how GLP-1
exerts its stimulatory effect on pancreatic insulin secretion. Pres-
ented is a new “feed-forward” hypothesis for stimulus-secretion
coupling that seeks to explain how GLP-1 interacts with oxida-
tive glucose metabolism to regulate mitochondrial ATP produc-
tion, ion channel function, Ca?* signaling, and exocytosis in the
B-cell. For additional discussion of GLP-1 and the B-cell signaling
pathways it regulates, the reader is referred to a prior review of
this subject matter [24].

GLP-1 as an Insulin Secretagogue Hormone

It is now established that the insulin secretagogue action of GLP-
1 is dependent on exposure of B-cells to concentrations of glu-
cose that are themselves stimulatory for insulin secretion. This
interaction is understandable if GLP-1 acts as a modulator of the
B-cell glucose signaling system. Prior studies have demonstrated
that GLP-1 increases the efficacy (maximal effect) and potency
(threshold concentration) of glucose as a stimulus for insulin se-
cretion [25]. As GLP-1 fails to stimulate insulin secretion in the
absence of glucose, the available evidence indicates that it acts
as a B-cell “glucose sensitizer.” This action may explain how
GLP-1 restores glucose-dependent insulin secretion in metaboli-
cally compromised B-cells, a phenomenon referred to as the in-
duction of “glucose competence” [26,27].
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When administered to human subjects, GLP-1

only stimulates insulin secretion when the concentration of
blood glucose is above fasting levels. Since the concentration of
blood glucose falls in response to administered GLP-1, the insulin
secretagogue action of GLP-1 is self-terminating. Therefore, un-
like insulin, GLP-1 possesses a natural safeguard and is less likely
to induce hypoglycemia.

To understand why the insulin secretagogue action of GLP-1 is
glucose-dependent, it is first necessary to consider exactly how
metabolism of glucose influences B-cell function (Fig.1). The
ability of B-cells to sense extracellular glucose requires uptake
of the sugar via a type 2 facilitative glucose transporter (Glut2).
Glucokinase, a type IV hexokinase that is rate-limiting for glu-
cose sensing, converts glucose to glucose-6-phosphate, which is
then metabolized via glycolysis to generate pyruvate. Oxidation
of pyruvate by mitochondrial pyruvate dehydrogenase generates
acetyl-CoA which is utilized in the Krebs cycle to generate hydro-
gen atoms for respiratory chain electron transport, oxidative
phosphorylation, and synthesis of ATP. The ensuing increase in
cytosolic [ATP]/[ADP] concentration ratio inhibits efflux of K*
through plasma membrane ATP-sensitive K* channels (K-ATP).
The resulting membrane depolarization activates voltage-de-
pendent Ca?* channels (VDCCs), thereby stimulating Ca%* influx,
an increase in [Ca%*];, and exocytosis of secretory granules.

This sequence of metabolic and ionic events constitutes a “trig-
gering” pathway for insulin secretion (Fig.1) [28]. What is re-
markable is that GLP-1 acts as a modulator of this triggering
pathway. GLP-1 interacts with glucose metabolism to promote
mitochondrial ATP production [29], thereby increasing the cyto-
solic [ATP]/[ADP] concentration ratio. GLP-1 also modifies the
adenine nucleototide-sensitivity of K-ATP channels, reducing
their sensitivity to ADP while increasing their sensitivity to ATP
[30,31]. The net effect is glucose-dependent K-ATP channel clo-
sure, membrane depolarization and Ca?* influx.

The importance of K-ATP channels as targets of GLP-1 action has
been emphasized by recent reports demonstrating that the insu-
lin secretagogue action of GLP-1 is diminished in sulfonylurea re-
ceptor 1 (SUR1) “knock out” (KO) mice that lack K-ATP channels
[32,33]. SURT is a subunit of the K-ATP channel, and it mediates
inhibitory effects of GLP-1 and glucose metabolism on channel
function. An alternative interpretation of this KO phenotype is
that SUR1 may also regulate the ATP-dependent priming of se-
cretory granules, a step that renders them release competent
[34]. Since SURT KO mice have a reduced number of primed
granules available for exocytosis, this alternative interpretation
predicts that these mice should exhibit a generalized secretory
defect not necessarily related to the inhibition of K-ATP channels.
However, the finding that B-cells derived from SUR1 KO exhibit a
robust secretory response to administered acetylcholine runs
against this alternative interpretation [33,35].

There is also an “amplification” pathway for glucose-dependent
insulin secretion (Fig.1) [28]. The amplification pathway increas-
es the effectiveness of Ca?* as a stimulus for exocytosis, and may
also be responsible for the recruitment of secretory granules to
the plasma membrane. Because the amplification pathway stim-
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ulates exocytosis in a Ca%*-dependent manner, this mechanism
requires an increase in [Ca%*]; generated by the triggering path-
way. For this reason, outdated terminology equating amplifica-
tion to a “K-ATP-independent” mechanism of exocytosis should
be abandoned. Instead, available evidence indicates that the am-
plification pathway facilitates exocytosis stimulated by the trig-
gering pathway.

An explanation for how GLP-1 might upregulate the function of
the amplification pathway is provided by the “malonyl Co-A hy-
pothesis” of glucose-dependent insulin secretion [36]. Carboxyl-
ation of pyruvate by pyruvate carboxylase allows B-cell glucose
metabolism to generate citrate that is exported out of the mito-
chondria for ultimate conversion to malonyl-CoA. Since malonyl-
CoA inhibits mitochondrial oxidation of free fatty acids (FFAs), its
synthesis links glucose metabolism to increased levels of cytosol-
ic FFAs. Increased availability of FFAs favors the synthesis of long-
chain fatty acyl-CoA esters (LC-CoA) and diacylglycerol (DAG).
Both lipid metabolites are proposed to exert stimulatory effects
on insulin secretion by virtue of their ability to promote acyla-
tion (LC-CoA) and protein kinase C mediated phosphorylation
(DAG) of secretory granule-associated proteins. The net effect is
an “amplification” of Ca?*-dependent exocytosis. Since GLP-1
acts via PKA to stimulate lipolysis and to liberate FFAs [37], it
may also stimulate glucose-dependent production of LC-CoA
and/or DAG, thereby favoring amplification.

PKA and Epac-mediated Signaling Properties of the GLP-1
Receptor

Although GLP-1 activates multiple signaling pathways in the -
cell, all available evidence indicates that the second messenger,
cAMP, serves as the primary effector by which GLP-1 exerts its
insulin secretagogue action [24]. New findings demonstrate that

GLP-1 utilizes cAMP to activate not only protein kinase A (PKA),
but also the Epac family (Epac1, Epac2) of cAMP-regulated gua-
nine nucleotide exchange factors (cCAMPGEFs) [38]. cAMPGEFs
are cAMP-binding proteins that couple cAMP production to the
activation of low molecular-weight G-proteins of the Rap family
(Rap1, Rap2). Potential downstream effectors of the activated
cAMPGEF/Rap signaling complex include ERK1/2 MAPK, phos-
pholipase C-¢, and PKB [38].

One PKA-mediated action of GLP-1 is to inhibit K-ATP channel
function via phosphorylation of the channel’'s SUR1 subunit
[30]. This action of GLP-1 upregulates the triggering pathway
and may be of particular importance for the appearance of first-
phase glucose-dependent insulin secretion in type 2 diabetic
subjects. It is also apparent that GLP-1 utilizes PKA to recruit se-
cretory granules from a reserve pool to a readily releasable pool
[34,39]. This action of GLP-1 supports sustained exocytosis, and
may allow for the appearance of second-phase insulin secretion
in type 2 diabetic subjects. The PKA-mediated recruitment of se-
cretory granules is complemented by a “post priming” action of
PKA to facilitate Ca2*-dependent fusion of secretory granules
with the plasma membrane [40]. This action of PKA may upregu-
late the triggering and amplification pathways simultaneously.

Actions of GLP-1 mediated by cAMPGEFs include its ability to
stimulate ATP-dependent priming of secretory granules, thereby
rendering them release-competent [34]. This action of GLP-1
may result from interactions of Epac2 with insulin granule-asso-
ciated proteins (Rim2, Piccolo) [41,42] or with SUR1 [43]. Since
direct protein-protein interactions of Epac2 and SUR1 are de-
monstrable [43], it seems likely that cCAMPGEFs may also confer
cAMP-dependent inhibition of K-ATP channel activity, possibly
by increasing the channel’s sensitivity to ATP [31]. In summary,
some actions of GLP-1 are Epac-mediated and may be indepen-
dent of Rap G-proteins.
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GLP-1 Stimulates CaZ* Influx and Mobilizes an Intracellular
Source of Ca%*

GLP-1 exerts pronounced stimulatory effects on B-cell Ca?* sig-
naling [44-46], actions that underlie its ability to promote
Ca?*-dependent exocytosis of secretory granules. Exposure of B-
cells to GLP-1 stimulates a fast transient increase in [Ca?*]; fol-
lowed by a slowly developing and sustained increase [47]. The
transient increase in [Ca?*]; results from cAMP-dependent re-
lease of Ca%* from intracellular Ca?* stores [47,48], whereas the
sustained increase results from influx of Ca?* through VDCCs
[44]. These effects of GLP-1 require B-cell glucose metabolism
and result from simultaneous activation of PKA [44] and Epac
[49].

Although GLP-1 exerts a small direct stimulatory action at VDCCs
[39], the primary impetus for Ca?* influx through these channels
is the membrane depolarization that results from interactions of
GLP-1 and glucose metabolism to inhibit K-ATP channel function
(Fig.1). This action of GLP-1 is complemented by its ability to in-
hibit K* efflux through voltage-dependent delayed rectifier K*
channels (Ky), thereby slowing action potential repolarization
(Fig.1). Inhibition of Ky channels by GLP-1 requires not only
PKA-mediated phosphorylation, but also EGF-R transactivation
with concomitant stimulation of PI-3K and PKC-{ [50].

The mobilization of intracellular Ca?* by GLP-1 is a process of
Ca?*-induced Ca?* release (CICR), and is initiated by the increase
in [Ca%*]; that results from Ca?* influx through VDCCs (Fig.2).
GLP-1 most likely acts via PKA and Epac to sensitize ryanodine
receptor (RYR) and IP; receptor (IP;-R) intracellular Ca?* release
channels to stimulatory effects of Ca%*, thereby gating the chan-
nels from a closed to open conformation [48,49,51-53]. A novel
form of second messenger coincidence detection may exist in
which a simultaneous increase in intracellular cAMP and Ca?*
concentrations allows for the appearance of CICR (Fig. 2).
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Interestingly, the source of Ca?* mobilized via CICR may reside
not only in the endoplasmic reticulum (ER) [47,49], but also
within the secretory granules (SG) [54]. Because RYR is express-
ed on the ER and SG membranes [55], CICR is expected to release
Ca?* from both cellular compartments (Fig.2). What remains to
be determined is exactly how GLP-1 modifies the function of
Ca?* release channels. Precedent exists for stimulatory actions
of cAMP at RYR and IP;-R Ca?* release channels, actions attribut-
able to PKA-mediated phosphorylation [47,48,52,53]. Such an
effect might be complemented by Epac-mediated actions of
cAMP, either through direct interactions of Epac with the chan-
nels, or via PKA-independent phosphorylation of the channels
[49,51].

Although Ca?* influx through VDCCs is established to be a stimu-
lus for insulin secretion, is also clear that exocytosis results from
the release of Ca?* from intracellular Ca?* stores [56]. Ca%* influx
stimulates CICR when B-cells are exposed to glucose in the pres-
ence of GLP-1. Under these conditions, CICR generates a global
increase in [Ca?*]; that stimulates the exocytosis of a large num-
ber of secretory granules located at a considerable distance from
VDCCs (Fig. 3). In the absence of GLP-1, glucose-dependent Ca?*
influx fails to stimulate CICR, so only a small number of secretory
granules are released at “active zones” where the opening of
VDCCs generates microdomains of elevated [Ca%*];. These obser-
vations indicate that the spatial distribution of intracellular Ca?*
dictates the pattern of exocytosis observed during the feeding
and fasting states (Fig. 3) [56].

GLP-1 Stimulates Mitochondrial ATP Production

Whereas the insulin secretagogue action of GLP-1 is blocked by
mannoheptulose [57], a glycolysis inhibitor, it is supported by
succinic acid dimethyl ester [58], a non-glucidic nutrient that be-
comes available for mitochondrial metabolism once deesterified.
It may be concluded that events intimately associated with gly-
colytic and mitochondrial metabolism are necessary prerequi-

Fig.2 GLP-1 interacts with glucose metab-
olism to mobilize an intracellular source of
Ca?*. Glucose-dependent closure of K-ATP
channels produces membrane depolariza-
tion (AV,,) and influx of Ca?* through VDCGCs.
GLP-1 sensitizes ryanodine receptor (RYR)
and IP5 receptor (IPs-R) intracellular Ca* re-
lease channels to stimulatory effects of Ca%*,
thereby allowing Ca®* influx to initiate Ca®*-
induced Ca?* release (CICR) from Ca?* stores
located in the endoplasmic reticulum (ER)
and secretory granules (SG). Uptake of Ca%*
into the ER and SG is mediated by the SERCA
and ATP2C1 Ca?*-ATPases, respectively. RYR
and IP5-R Ca?* release channels act as sec-
ond messenger coincidence detectors be-
cause they open in response to a simulta-
neous increase in cCAMP and Ca®* concentra-
tions.
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Fig.3 Contrasting mechanisms of exocy-
tosis that occur during the fasting and feed-
ing states. In the fasting state, the concen-
tration of blood glucose is low and B-cells
generate action potentials infrequently.
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sites for an effective B-cell secretory response to GLP-1. Confir-
mation that this is the case has been provided by new studies ex-
amining the stimulatory effect of GLP-1 on mitochondrial ATP
concentration ([ATP],,). These studies reveal a previously unrec-
ognized ability of GLP-1 to increase [ATP],, in MING6 insulin-se-
creting cells [29]. This action of GLP-1 requires exposure of cells
to glucose, as expected if GLP-1 stimulates glucose-dependent
mitochondrial ATP production. The stimulatory effect of GLP-1
on [ATP],, is accompanied by CICR, and is not observed when in-
tracellular Ca?* is buffered or when Ca?* stores are depleted [29].

These findings are of interest from the perspective of current
concepts regarding “metabolic priming” in the B-cell. Metabolic
priming is a facilitation of mitochondrial ATP production, and it
is observed under experimental conditions that produce an in-
crease in [Ca?*]; [59]. When B-cells are equilibrated in a low con-
centration of glucose, brief application of KCI produces Ca?* in-
flux, an increase in [Ca?*];, and a slight increase in [ATP],. KCI
“preconditioning” of this type produces metabolic priming since
it allows for a larger increase in [ATP],,, than normal when B-cells
are subsequently exposed to a higher concentration of glucose
[60]. These observations suggest that, as with KCl, GLP-1 might
act via Ca?* to prime a key step of mitochondrial metabolism im-
portant in glucose-dependent ATP production. Indeed, a stimula-
tion of Krebs cycle and/or NADH shuttle-linked mitochondrial
dehydrogenases by Ca?* might explain how a Ca%*-elevating hor-
mone such as GLP-1 interacts with B-cell glucose metabolism to
stimulate ATP production [61].

High Blood [Glucose]
High Blood [GLP-1]

Large Number Of Action Potentials
CICR Is Generated
Exocytosis Of Many
Secretory Granules

elevated during the feeding state. Glucose
and GLP-1 act synergistically to close K-ATP
channels and to generate numerous action
potentials. Simultaneously, GLP-1 sensitizes
Ca?* release channels to stimulatory effects
of Ca?, thus allowing the appearance of
CICR in response to Ca®* influx. CICR gener-
ates a global increase in [Ca?*] and initiates
the exocytosis of a large number of secre-
tory granules located outside of the active
zones.

GLP-1 Inhibits K-ATP Channel Function

K-ATP channel activity in B-cells is reduced under conditions
that produce a simultaneous increase in intracellular cAMP and
Ca?* concentrations [62]. Inhibition of K-ATP channels by cAMP-
elevating agents is associated with increased levels of reduced
pyridine nucleotides, as measured by the determination of
NAD(P)H autofluorescence [63]. Reduced pyridine nucleotides
accumulate as a consequence of oxidative glucose metabolism,
suggesting a previously unrecognized interaction of cAMP and
Ca?* to stimulate mitochondrial ATP production and to increase
the cytosolic [ATP]/[ADP] concentration ratio while inhibiting
K-ATP channel function. Taken together, such findings provide
additional evidence for the existence of a novel form of second
messenger coincidence detection critical to B-cell function. By
mobilizing Ca?* stores in a cCAMP and Ca?*-dependent manner,
GLP-1 may generate a cytosolic Ca%* signal (CICR) that is a stim-
ulus for glucose-dependent ATP production and K-ATP channel
inhibition.

Stimulatory effects of GLP-1 on mitochondrial ATP production
are accompanied by alterations in K-ATP channel adenine nu-
cleotide sensitivity. GLP-1 decreases the channel’s sensitivity to
ADP, thereby inhibiting channel function [30]. This action of
GLP-1 is cAMP-dependent and is mediated by PKA. In contrast,
GLP-1 acts independently of PKA to increase the channel’s sensi-
tivity to ATP, thereby closing the channel [31]. Although not yet
confirmed, this PKA-independent action of GLP-1 might reflect
its ability to activate Epac [38]. Such alterations of adenine nu-
cleotide sensitivity are likely to play a major role in determining
the effectiveness of mitochondrial ATP production as an inhibitor
of K-ATP channel function. For example, Ca%*-mobilizing trans-
mitters that fail to stimulate cAMP production may also fail to in-
fluence K-ATP channel adenine nucleotide sensitivity; under
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by stimulating cAMP production. cAMP-dependent mobilization of intracellular Ca?* via CICR
generates a Ca?* signal that stimulates exocytosis and which also interacts with glucose metab-
olism to stimulate mitochondrial ATP production. These mitochondria are strategically located
at the plasma membrane in close proximity to K-ATP channels. Increased mitochondrial ATP pro-
duction generates an increase in cytosolic [ATP]/[ADP] concentration ratio, thus inhibiting K-ATP
channels. Simultaneously, GLP-1 acts via PKA and Epac to decrease the sensitivity of K-ATP chan-
nels to ADP while increasing their sensitivity to ATP. Closure of K-ATP channels produces mem-
brane depolarization and influx of Ca?* through VDCCs. Entry of Ca®* is a stimulus for exocytosis
and it also initiates additional CICR because intracellular Ca?* release channels are sensitized by
GLP-1. A feed forward mechanism exists because CICR stimulates an additional round of ATP pro-
duction, K-ATP channel closure, and Ca?*-dependent exocytosis. Note that the ability of GLP-1 to
stimulate insulin secretion is dependent on the presence of glucose because glucose serves as

the “fuel” for mitochondrial ATP production.

these conditions, their stimulatory effect on mitochondrial ATP
production may not be accompanied by a detectable decrease in
K-ATP channel activity.

Conclusion: A “Feed-forward Hypothesis” for Regulated
Insulin Secretion

Fig.4 shows a model that seeks to explain how GLP-1 interacts
with B-cell glucose metabolism to stimulate insulin secretion.
The model predicts that metabolic priming within mitochondria
plays a key role in allowing GLP-1 to upregulate glucose-depen-
dent ATP production. Under conditions where intracellular Ca%*
release channels are sensitized by GLP-1, Ca®* influx triggers
CICR, generating a CaZ* signal that stimulates the activity of mi-
tochondrial dehydrogenases. This increases [ATP],, and increases
the cytosolic [ATP]/[ADP] concentration ratio. K-ATP channels
close, the membrane is depolarized, and VDCCs are activated.
Ca?* influx through VDCCs stimulates exocytosis, while stimulat-
ing another round of CICR and ATP production. This sequence of
events constitutes a self-perpetuating “feed-forward” mecha-
nism that is responsible for the glucose-dependent closure of K-
ATP channels. Note that this action of GLP-1 is complemented by
its ability to modulate the adenine nucleotide-sensitivity of K-
ATP channels, thereby favoring their closure. Also note that the
ability of GLP-1 to activate this feed-forward mechanism is de-
pendent on the presence of glucose since glucose serves as the
“fuel” for mitochondrial ATP production. This model agrees with
the known ability of cAMP-elevating agents to inhibit single K-
ATP channel activity, reduce the membrane conductance, and
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depolarize B-cells [27,64,65]. The model may also explain earlier
reports that activators of cAMP signaling depolarize the silent
phase of glucose-induced “bursts” of action potentials in intact
islets [66 - 68]. Depolarization of this type augments oscillatory
electrical activity that drives Ca?* influx and which initiates pul-
satile secretion of insulin.
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